
1;

#v
Sll ?"'"1?'!J''l!!?"'"'r*il??ll|!
llyidimiüLJiJliiiliii

PB95-149737 Inf crmstScn la our i

COMPLETING THE TEMPORAL PICTURE

'\fipwvsa tea pueäc teiaos«

si

I

STANFORD UNIV., CA

DEC 89
•i

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

19970821 070
DnC QUALITY OTJPEtTPBD 8

BIBLIOGRAPHIC INFORMATION ;

PB96-149737 \

Report Nos: STAN-CS-89-1296 \
Title: Completing the Temporal Picture. J

Date: cDec 89 f

Authors: Z. Manna and A. Pnueli. f

Performing Organization: Stanford Univ.. CA. Dept. of Computer Science.**Weizmann :i
lnst. or Science. Kenovoth (Israel). Dept. of Applied Mathematics. |

Sponsoring Organization: *National Science Foundation. Washington. DC.*Defense f
Advanced Research Projects Agency. Arlington. VA.*Air Force Office of Scientific |
Research. Boiling AFB. DC. |

Contract Nos: NSF-DCR-8413230. NSF-CCR-8812595. DARPA-N00039-84-C-0211. AFOSR-87-Of
AFUSK-88-U281 |

NTIS Field/Group Codes: 62B (Computer Software) |

Price: PC A03/MF A01 I
I

Availability: Available from the National Technical Information Service. Springfiel'
VA. 22Ibi |

Number of Pages: 30p |

Keywords: *Computer program verification. *Mathematical logic. Numerical analysis. I
Algorithms. Computations. *Temporal logic. |

Abstract: The paper presents a relatively complete proof system for proving the f
validity of temporal properties of reactive programs. The presented proof system i
improves on previous temporal systems, such as (MP83a) and (MP83b). in that it redii
the validity of program properties into pure assertional reasoning, not involvinq f"
additional temporal reasoning. The proof system is based on the classification of I
temporal properties according to the Bore! hierarchy, providing an approriate proof
rule for each of the main classes, such as safety, response, and progress propertie

:3

'A

.-.'■.

MmM

December 1989 Report No. STAN-CS-89-1296

IIIP!III!^!!I!IH!||!III|I! lÜUiiiLJiUliiinL
PB96-149737

Completing the Temporal Picture

by

Zohar Manna and Amir Pnueli

Department of Computer Science

Stanford University

Stanford, California 94395

! ß
M

''/'//'>

DTIC QUALITY INSPECTED 3

Rtnooucf o IT- gm
ttt. Dipmiinn at C«m«arca

»«ln«T»chr».Oilun,»>i«iWv««
I Hilt

Completing the Temporal Picture*

Zohar Manna Amir Pnueli
Stanford University t Weizmann Institute of Science*

and
Weizmann Institute of Science*

?-"■:"■

i ■'-■'"
Abstract I

t
The paper presents a relatively complete proof system for proving the validity of temporal |

properties of reactive programs. The presented proof system improves on previous temporal |
systems, such as [MP83a] and [MP83b], in that it reduces the validity of program properties |
into pure assertional reasoning, not involving additional temporal reasoning. The proof system 1 >
is based on the classification of temporal properties according to the Borel hierarchy, providing |
an appropriate proof rule for each of the main classes, such as safety, res/x>nse, and progress |
properties. *

I

1 Introduction 1
r •
I

Temporal logic is, by now, one of the acceptable and frequently used approaches to the formal \
specification and verification of concurrent and reactive programs. Even though we have witnessed, I
over the last several years, a great progress in the automatic verification of finite-state programs, |
the main tool for establishing that a proposed implementation satisfies its temporal specification is I
still that of deductive verification, using a set of axioms and inference rules. | 1

As described in [MPS3a] (see also [MP83b] and [PnuS6]), a proof system that supports the? s
verification of temporal properties over reactive programs has to deal with three types of validity. [■..

• A- Assertional Validity. This is the validity of non-temporal (state) formulae (also called;
assertions) over an arbitrary interpretation. I ' -"

• T- General Temporal Validity. This is the validity of temporal formulae over arbitrary se-1
quences of states (models). m

• V- Program Validity. This is the validity of temporal formulae over sequences of states which r
represent computations of the analyzed program. I

'This research was supported in part by the National Science Foundation undsr grants DCR-8413230 and CCR-f
8812595, by the Defense Advanced Research Projects Agency under contract N00039-84-C-0211, and by the United;
States Air Force Office of Scientific Research under contracts AFOSR 87-0149 and 88-0281. I

'Department of Computer Science, Stanford University, Stanford, CA 94305
1 Department of Applied Mathematics, Weizmann Institute, Rehovot, Israel

■TUüuitmUtlmil '"-"d"Ml

■St to MM lr«i •» <*VW "■

ft

I um-s|„,n.|.ng to these throe types of validity, the proof system inav be partitioned into three
parts, ea.h providinj. axiom* and rules for establishing the validity of the corresponding tvpe. This is
essentially the structure of the proof system presented in [MPS3b]. where we r?fer to the assertional ;
part as the dnmuin part. \

The program part presents some basic proof rules and some derived rules. The derived rules '
provide direct support for proving some of the most frequently used temporal properties of programs. \

One group of rules establishes the validity of the invariant formulae aq and a(p — Oq). which
express the invariance of a state formula q, either throughout the computation, or triggered bv the '
occurrence of p. " |

9

Another group of rules establishes the validity of the eventuality formulae O? and o(p — <><?), ^
which express the guarantee that q will eventually happen, either once or following each occurrence *
of p. i

These proof rules are completely satisfactory for establishing this restricted but very prevalent I
set of temporal formulae. The rules derive temporal conclusions from assertional premises. They f
have been proven relatively complete, and are the main working tools for verification of the temporal f

properties of programs (see, e.g., [0LS2], [MPS4], [KröS7]). I

However, the question which is only partially answered in [MPS3a] is how do we prove all the !
other properties whose expression in temporal logic does not fall into the restricted class of invari- I
ance and eventuality formulae. The partial solution given there is a general relative completeness \
theorem, which shows that the program part is adequate for reducing the validity of a temporal I
formula over a given program (^-validity) into a set of valid formulae, which are either assertional \
(«4-valid), or temporal but valid over arbitrary sequences of states (T-valid). I

We remind the reader that this is the general character of all rtlativt completeness results I
for program logics such as Hoare logic ([AptSl]) or Dynamic Logic ((Har79j). Since, as soon as f
we consider programs that operate over infinite domains, we lose the possibility of having true!
completeness, the best we can hope for is relative completeness ([CooTS]). This type of completeness f
ensures an effective reduction from the validity of a program logic statement into the validity of a !
finite number of assertional statements. " |,

Unfortunately, the reduction given in [MPS3a] is not only into assertional statements, but also if
into generally (T-) valid temporal statements. This requires a proof of a general program propertv f
to be based not only on assertional reasoning, but also on temporal reasoning, which is less familiar, f
even to a person who is well versed in general logic. This fact has been considered bv some t
researchers a deficiency, and has caused them to shy away from the temporal proof system and look I
for alternative formalisms, in which a complete reduction into assertional statements is guaranteed I
([ASS9], and also see [MP87]). |

In this paper we attempt to remedy the situation by providing a richer proof system for the I
program part, which ensures complete reduction of a general temporal formula (given in a canonical I
form) into a finite set of assertional statements, whose validity imply the validity of the original f
temporal formula. |

The approach to a complete proof system is based on a classification of temporal properties f
according to their expression in a canonical form, which applies a set of restricted future modal-1
ities to arbitrary past formulae. This classification establishes a hierarchy of temporal properties F
([MPS9]), whose classes can be characterized according to three different criteria. We have already i
mentioned their characterization in terms of the syntactic form of their canonical representation.'

•"%
:m.M*

A not IHM- characterization is .semantical, looking at a property as the set of all sequences which have
this property. By this view we can give a topological characterization to the classes in our hierar-
chy, locating it at the first two levels of the Bore! hierarchy. The third characterization is in teinis
of structural restrictions on the Street! automaton that recognizes precisely the set of the infinite
sequences which have the property.

In principle, we should provide a separate proof rule for each of the property classes in our
hierarchy. In practice, we concentrate on three particular classes, which have special significance
as expressing most of the interesting program properties, and forming a natuial generalization of
the two classes of invariance and eventuality properties considered in the previous proof systems.
These are the classes of:

• Safety Properties. These are all the properties that can be expressed by a temporal formula
of the form

for some past formula q.

• Response Properties. These are all the properties that can be expressed by a temporal formula!

of the form !

o(p —♦ 0<?)> or alternately, DO<?

for some past formulae p and q. f
I.

• Progress Properties. These are all the properties that can be expressed by a temporal formula >
of the form

for some past formulae p and q.

nop -+ aoq

0

:!

We provide complete rules for each of these classes. This provides full coverage for the entire?
temporal logic, since by [LPZS5] (see also [ThoSl]), any temporal formula <P is equivalent to at
conjunction of progress properties. Therefore, to prove the V-validity of V>, it is sufficient to prove
the T-validity of each of the conjuncts, for which we can use the rule for progress properties. |

%

2 Programs and Computations
■m -

The basic computational model we use to represent programs is that of a fair transition system. Inf
this model, a program P consists of the following components. t

• V = {ui,...,u„} - A finite set of state variables. Some of these variables represent </«/«■
variables, which are explicitly manipulated by the program text. Other variables are enntrot
variables, which represent, for example, the location of control in each of the processes in <r
concurrent program. We assume each variable to be associated with a domain, over which it
ranges. |

• S - A set of states. Each state s € £ is an interpretation of V, assigning to each variable
y £ V & value over its domain, which we denote by s[y]. i i

:M

• 7- A finite set of hviititm»*. Fach transition 7 <= 7 is associated with .in.i^ninn ^.(UP). v
called the transit,on rdation. which refers to both an unprimcd and a primed version of the '
state variables. The purpose of the transition relation p, is to express a relation between a \
state * and its successor .•«'. We use the unprimed version to refer to values in .■*. r.nd the t
primed version to refer to values in *'. For example, the assertion x' = x + 1 states that the '.'
value of x in 5' is greater by 1 than its value in s. ?

• 0 - The precondition. This is an assertion characterizing all the initial states, i.e., states at \-
which the computation of the program can start. A state is defined to be initial if it satisfies f

• C = {Ci,...,Cr} - A finite set of continual fairness requirements (also called justice or weakl
fairness requirements). Each continual fairness requirement C, € C consists of two sets of ■-■■
transitions C, = (£,,7,), £, C 7, C 7, on which the requirement of continual fairness is I
imposed. Intuitively, the continual fairness requirement (£,,7;) € C disallows a computation I
in which, beyond a certain point, £, is continually enabled, but no transition of Tt is taken I
beyond this point. I

l:
• ft = {Ri Rt} - A family of recurrent fairness requirements (also called strong fairness I

requirements). Each recurrent fairness requirement ft 6 K consists of two sets of transitions f
ft = (£„7,), Ei C 7; C 7, on which the requirement of recurrent fairness is imposed. I
Intuitively, the recurrent fairness requirement (£,,7) € ft disallows a computation in which, I
beyond a certain point, Ei is enabled infinitely many times, but no transition of 7, is taken I
beyond that point. |

We define the state s' to be a r-successor of the state 5 if 1
fr

(*.*'> r=/»r(K,V'), I

where (s.s1) is the joint interpretation which interprets x € V as s[x], and interprets x' as *'[.r]. I
Following this definition, we can view the transition r as a function r : S •-» 2s. defined by: I

T{S) = {5' I s' is a --successor of s). I

We say that the transition r is enabled on the state 5, if T(S) ^ 4>. Otherwise, we say that r is f
disabled on 5. We say that a state s is terminal if all the transitions r € 7 are disabled on it. The |
enabledness of a transition r can be expressed by the formula

En(r): (3V")MV,V"),

which is true in s iff 3 has some r-successor.

For a set of transitions E C 7, we say that E is enabled on ä. denoted by £«(£), if *o»»e|;

transition r € E is enabled on s, and that E is disabled on 5 if all transitions r € E are disabled I
■on s. h

Given a program P for which the above components have been specified, we define a computation f
of P to be a finite or infinite sequence of states a : s0,$i, *j,..., satisfying the following requirements: |

• Initiality s0 is initial, i.e., s0 |= 6.

1

i
SI

'I

• Co».■irridion For ca< li ./ = 0,1 tin- state ,s; + , is a r-Micressor of the state .«,. i.<\.

•*j + \ € r(.-j). for some T £ T. In this case, we say that the transition r is

takrn at position j in <r. For a set of transitions T C 7. wo say that f is

/airn at position j, if some T £ T is taken at j.

• Termination Either a is infinite, or it ends in a state c.-t which is terminal.

• Continual Fairness For each {E„T,) £ C it is required that, if E, is continually enabled beyond
some point in a, then T, must be taken at infinitely many positions in a.

• Recurrent Fairness For each (£,,T,) € U it is required that, if £, is enabled on infinitely many
states of a, then 7i must be taken at infinitely many positions in a.

For a program P, we denote by Comp(P) the set of all computations of P. For simplicity, we will only
consider programs for which T is alwavs enabled. Such programs have only infinite computations.

3 Temporal Logic

We assume an underlying assertional language, which contains the predicate calculus, and inter-
preted symbols for expressing the standard operations and relations over some concrete domains.
For the sake of completeness, we require that one of the domains is that of the integers, or another
domain with similar expressive power. We refer to a formula in the assertional language as a state
formula, or simply as an assertion.

A temporal foimula is constructed out of state formulae to which we apply the boolean operators
-^ and V (the other boolean operators can be defined from these), and the following basic temporal
operators:

O ~ Next © - Previous
U - Until S - Since

A model for a temporal formula p is a finite or infinite sequence of states a : $c,si,..., where
each state .s, provides an interpretation for the variables mentioned in p. For simplicity, we will
only consider the case of infinite models.

Given a model <r, as above, we present an inductive definition for the notion of a temporal
formula p holding at a position j > 0 in <7, denoted by (<7, j) f= p.

• For a state formula p,

(^;)I=P <=> »I \=P-

That is, we evaluate p locally, using the interpretation given by Sj.

• {<TJ)\=-^P

• (<M)hO
• {v,j)\=pUq

£ J

(<M')NOP
{(Tj)^pSq

(<7,j+l)hp
for some k > j, (<r, Jfc) \= q,
and for every t such that j <i < k, (a, i) }= p
j > 0 and (<TJ - 1) \= p
for some k < j, (<x, Jt) f= 7.
and for every i such that j > i > k, (a,i) \= p

'4

m

1
ail

i
■'■■..M

i

iüteüiäM

Acichtioii.il temporal operators cm be drfHle<l fls follows: i

Cl'~Tl<P -Eventually K,P = TSP - Sometimes in the past
D/'--0-/> -Henrcforth B/>=-«>-7, - Always i„ the past -
pUq = Dp\/(pUq) -Unless pS7 = Qp V (pSq) - Weak Since f

Another useful derived operator is the tntailmtnt operator, defined by: •

p=$~q <=> D(p_(?). J

A formula that contains no future operators is called a past formula. A formula that contains ?'
no past operators is called a future formula. Note that a state formula is both a past and a future "
formula. We refer to a past formula [future formula] that is not also a state formula, as a slrict-pa<t "
[strict-future, respect.vely] formula. For a state formula p and a state 5 such that p holds on * we i
say that 5 is a p-state. |

i'
If> 0) k p, we say that p holds on <x, and denote it by a f= p. A formula p is called satisfiablt f

if it holds on some model. A formula is called (temporally) valid if it holds on all models. j

Two formulae p and q are defined to be equivalent if the formula p s q is valid, i.e. a b p iff ?
o f= q, for all a. ' |

The notion of validity defined above is the notion of T-validity. Given a program F, we can (
restrict our attention to the set of models which correspond to computations of P, i.e., Comp(P) I
This leads to the notion of 7>-validity, by which p is P-valid if it holds over all the computations of |
P. Similarly, we obtain the notions of P-satisfiability and P-equivalence. f

If

Canonical Form and Classification I

By [LPZS5] (see also [ThoSl]), every temporal formula is equivalent to a formula of the form I

I-
A(DOwVODft), I *=l f:

for some past formulae p,,?,,»' = l,...,n. §

Based on this canonical form we can classify the properties expressible by temporal logic ac- f
cording to their expressibility by restricted cases of this general formula. We list below the main f
classes in this classification, specifying their temporal characterizations. For each class we present f
the form of the temporal formulae that express the properties in that class, where the subformulae I
P, 7, P., q, appearing there are arbitrary past formulae. We refer the reader to [MP89] for additional *'
properties and characterizations of this hierarchy.

• Safety Properties - rjp.

• Tei-mination Properties - <>p.

• Intei-mittence Properties - Dp V Oq.

• Multiple Intermittence Properties - A"=i(Op, V<>9,).

• Response Properties - DOp-

I

>i

inn ilii !■ m

• Pertistriicc Pro/x rlirs A- n„

• Progress Fro,« rt„s - DOj<VOD,.

Äf b^'e' ,C mUltip!C Pr°SreSS Cl"S " thC maXimal d« °f P~P^ies expr^ibln .„•

4 Rules for Safety

From now on, we fi.v onr attention on a program P, specified by the component» (V S 7 0 £• U)

Ju ItfeTvIrrTVrlr T' '"'T *" eStablishinS 'he ^-.idity of a safety forn.nl,. A, „ i

I

(pr A p) -4 <?', denoted by {p}T{q}, \
I

where />r is the transition assertion corresponding to r and n' th- «~™ ^ ■ r . *
_ :e _>*.,• jr , , . '° ° r> ana 9 > l"e prcroca version of the assert on i

£ w states ^/^t? CaCh Varia^ 0CCTng m q ^ !tS Primed Versio"- Sin^Th^ i
to seTJhat T"SUCCCSSOr °f *' and «' SUteS that « h0,ds on * it » not difficult {

"s^IeTa ^lCOnditi0n {P}T{q) h aSSerti0na11^ Va,id' then ««y r-successor of a {

For a set of transitions T C 7, we denote by {p}r{o} the verification condition of 7\ relative to » f
and 9) requiring that {p}r{?} holds for every r € 7\ ^

o^ir^

mv II. 0 _♦ y»

12. ¥>-»?

Innr.rrran auxu ry assertion 9 which-by premise n« h°ids ™«*«y. ^d by p«™* i3 is propagated rom each state to its successor. This shows that 9 is an invariant o^he ö oJam

£LS; that TtinUOUS,'V °Ver aU ^^ f P- Since, by 12, the 3^ J^ .plies ^ follows that ? is also an invariant of the program. P 9'

■.1

m

m

Generalizing to Past Formulae

Next, we have to extend the INV rule to deal with formulae q. which are past foin-ilae. First, ve :
extend the notion of the primed version of a formula, to apply also :o a past formula. Recall that
the intended meaning of a primed formula is to express the value of a formula in the next state, m
terms of the values of the variables in th«: next state and in terms of values in the current state.;
This is inductively defined as follows: s

• For u state formula p(V'), we define as before |

(P(V)Y = p(V). |

• For a previous formula %

(OP)' = P. §.;';.'
This corresponds to our intuition that Op holds in the next state iff p holds now. |

• For a since formula |

(pSq)' = q'V((pSq)Ap'). j

This corresponds to the intuition that pSq holds in the next state if, either 7 holds there, or!
pSq holds now and p holds next. I

With this definition, we extend the notion of the verification condition {p}r{q} to apply also to!
past formulae p and q, and to mean I

{pTAp)=^q'. I

Note that since we work with temporal formulae, we replaced the previous implication by an en-f
tailment, because we expect the implication to hold at all positions of the computation, not only!
at the first one. |

With this extension, the general single rule for establishing safety properties is given by !

SAFE SI. (0Afirst)=>-y>
52. V=^q
53. {*>}TM

ü<7

The implications, appearing in the premises II and 12 of the INV rule, have been replaced in the SAFET

rule by the entailments, appearing in the premises Si and S2. In Si we also added the conjunct Erstf
which is an abbreviation for the formula -«OT, characterizing the first position in the computation^
as the only position that has no predecessor. This conjunct is sometimes necessary to ensure that*
V holds in the first position.

■am ■«...«■ .-.«i.-iti

A Minimal General "'art

F\.'mining the premises SI S-S of the SAFE st'le, we observe that they all have the form of i<-ui|>-.r.*!

fo-mulae, which are actually other safety formulae. How are there to be proven.' It seem?, tli.it ue
need some additional rules, belonging to t lie general part. These rules enable us to prove some
temporal formulae that are generally valid, i.e., hold over any sequence of states, unrein ted to anv
particular program.

The first rule we consider is the rule of temporal instantiation, which provides a basic tool
for deriving temporal validities from assertional ones. Let q be a state formula containing the

prepositional symbol p, and let ^ be a temporal formula. We denote by «/[v'/p] the temporal
formula obtained from q by replacing all occurrences of p by ¥>.

1

INST

Oq[V/p)

Note, in particular, that if 7 has the form t -* r then the temporal conclusion is an entailment of
the form t[P/p] =*~r[<p/p}. This rule is often used, without any instantiation, to derive the temporal
validity of Dq from the assertional validity of q. In these cases, it is sometimes referred to as
generalization.

The next rule we consider can be viewed as stating the monotonicity of the temporal operator
D. For two temporal formulae p and q, we can interpret the entailment p=i~q, i.e., a(p —» q), as
an ordering relation between the formulae, stating that p is smaller (stronger) than q. Indeed, for
a sequence a, p=$~q claims that the set of positions at which p holds is contained in the set of
positions at which q holds. Monotonicity of the D operator states that if p=^q, and Dp is valid,;
then so is 07.

S-MON Al. p=*-q

A2. Dp
D<7

r

This rule can also be viewed as a temporal version of Modus Ponens, where entailment replaces
implication. In fact, the two preceding rules provide a formal support for many elementary ma-
nipulations, such as substituting equals for equals, and using any instantiation of propositional
tautologies. We refer to any such manipulation as justified by propositional reasoning.

In addition to these very genera! rules, we need in our general part some properties which are
specific to the initial part of a sequence of states. These will enable us to draw some conclusions
from the formula first, as is needed in premise Si of the SAFE rule.

These are presented by the following two axioms:

• I-PREV: first =*- --©p

• i-siNCE: first =*- UpSq) = q) I

The I-PREV axiom states that no previous formula can hold at the initial position of any sequence/
The i-siNCE axiom states that the formula pSq can hold at the initial position iff q holds there. I

Y;'

1

-'■ägi

IM

i

'ill

^affiryi'™iyiw«7y1i»^^«iywp; •'. <«pi.'W.y"^ J»

The Completeness of the SAFE Rule

We M-oceed to consider the applicability of the SAFE rule to the proofs of safety properties. First, i
| | we present an example, illustrating its use.

Example 4.1 Consider the trivial program with a single state variable .r, precondition x = 0. and
a single transition r whose assertion is given by pT : x' = x + 1. Observe that this program has a :
single infinite computation, given by (i : 0), (i : 1), (x : 2),...

We wish to prove for this program the trivial safety property f'

D((x=10)-O(x = 5)). 1.

This property claims that any state in which x = 10 must have been preceded by a state in which ;
i = 5. Note that this trivial property would not be true for a program that advances in steps of 2, I
rather than steps of 1. |

To prove this property, we identify q as (x = 10) —<$>(x = 5) and intend to use the SAFE rule, t
As the auxiliary formula <?, we take (x > 5) - <$>(x = 5). The rule requires showing the following \
three premises: i

t-% 51. [(* = 0) A first] =M(x>5)-o(x = 5)] * I,

52. ((a? > 5) - 0(i = 5)) =J- ((x = 10) - <=>(x = 5)) f

I
53. [(*' = x + 1) A ((x > 5) -» o(x = 5))] =*- {(x' > 5) -» (o(x = 5) V (x' = 5))] f

i
I

In S3 we have already expanded (<S>(x = 5))' into (o(x = 5) V (x' = 5)). All of these apparently !
temporal formulae can be established by the INST rule, using the following three valid state formulae, I
and their associated instantiations. I

I

VI. ((x = 0)Ap)-,((x>5)--r) I

with the replacement of (first,<${x = 5)) for the proposition symbols (p,r), respectively. 1

V2. ((.r> 5)-»/>)->((* = 10)-p) |

|| with the replacement of <$>(x = 5) for the proposition symbol p.

V3. [(x' = x + 1) A ((x > 5) - p)] -» [(x' > 5) - (p V (x' = 5))]

with the replacement cf £>(* = 5) for the proposition symbol p.

il

.ci

M Theorem 7.2, presented in Section 7, establishes the adequacy of the SAFE rule by stating: I

|
The SAFE rule is complete, relative to assertional validity, for proving the V-validity of I
any safety property. |

I"
The proof of the theorem is based on the construction of a big past invariant which relates the re-
values of variables in an accessible state (i.e., appearing in some computation of P) to the boolean f
values of the temporal sub-formulae of the past formula o, whose invariance we wish to establish. I

f ■

10 fe

™%wmmmm%tmii/mM®g$88!®'

Causality Formulae

IWen though, in theory, the completeness Mieorem above fully settles the question of proving the
validity of safety formulae, there is a practical interest in identifying special forms of safety formulae,
for which a specific proof methodology exists. One of these subclasses contains the propeities
expressible by the causality formula

for past formulae p and q. The causality formula states that every p-state is necessarily preceded
by a 9-state.

To present a proof rule for causality properties, we define first the inverse verification condition,
denoted by {p}r~l{q} and standing for the entailment j

(pTAp')=^q. j

The validity of this condition ensures that any r-predecessor of a p-state must be a q-state. The
condition is extended to sets of transitions TCTin the usual way. Then, the following rule is ■
adequate for proving causality propeities. I

CAUS Kl. p^(9V(j)
K2. (0Afirst)=s-.y
K3. {y}T-'{?V<?)

P=>-<S>9

By premise Kl, any state satisfying p. either already satisfies q, or satisfies the auxiliary past!
formula 9- By premise K3, the predecessor of any «Estate must satisfy 9Vf Thus, if we do notf
find a q preceding p, <P propagates all the way to the initial position. However, this contradicts?
premise K2, according to which the initial position cannot satisfy <fi. I

I
Incremental Proofs |

In the previous paragraphs, we have considered how to establish the invariance of some past for- f
mulae. Having established some basic invariants of this form, we may want to use them in order to;
derive more complex properties. For this purpose, we quote again the S-MON rule, which suggests at
strategy, to which we refer as the incrcmentality principle. According to this principle, we establish?
first the validity of a simpler safety property Dp. Later, whenever we have to establish the validity!
(over P) of a premise that has the form ov\ we can instead establish the validity of p=W'-

5 Rules for Response

Response properties are those which can be expressed by a formula of the form

p=*-0<7. or equivalently o(p —* O?)

for some past formulae p and q. Now that we have learned, in the previous section, how to generalize*
rules having assertional premises into rules with temporal premises involving past formulae, it is'
straightforward to properly adapt the set of rules from [MP83a]. The rules for establishing response!
properties can be partitioned into single-step rules and extended rules. We consider each group in£
turn.

11

'$

'a

I

Rules for Single-Step Response

These are the rule, that establish properties that depend on the execution of a single helpful
transition (which may be .selected out of several candidates) to accomplish the guaranteed respond
q. We have three rules in this group, which differ by the type of fairness on which they rely.

The first rule ;-, unconditior.« of any fairness assumption, and onlv relies on the fact that as?

long as there are cabled transitions, some transition will eventually be taken.

B-RESP Bl. p=$~(qV>p)

B2. {*}T{q}
B3. <P=*-(gV En(T))

■Oq

The rule considers three past formulae p,g, and the auxiliary <p. Premise Bl requires that any!
p-state, either already satisfies q, or satisfies <p. Premise B2 requires that taking any transition from!
a V-state, must lead to a 7-state. Premise B3 requires that at least one transition must be enabled 1
on each Estate that does not satisfy q. Clearly such a transition must be taken next, resulting in *
a g-state. §

The next single-step rule relies on continual fairness to ensure that eventually a helpful transition, f
leading to q, will be taken. It assumes a continual fairness requirement (E,T) EC. ' i

C-RBSP ci. p=>-(gvv)
C2. {*}T{qV<p)
C3. {*}T{q}
C4. f=^(qV En(E))

P=*~Oq

Premise Cl ensures, as before, that p entails q or 9. Premise C2 states that any transition of the!
program, either leads from v to «7, or preserves <p. Premise C3 states that anv transition in the I
helpful set T leads from V to q. Premise C4 ensures that E is enabled as long as V holds and t
q does not occur. It is not difficult to see that if p happens, but is not followed bv a q, then v f
must hold continuously beyond this point, and no transition of T is taken. However, due to CM, I
this means that E is continuously enabled beyond this point, which violates the requirement of |
continual fairness represented by {E,T).

The last rule relies on a recurrent fairness requirement (E,T) € ft.

R-RESP Rl. p=>-(qV<p)
R2. {<P}T{qV<p)
R3. {v}T{q}
R4. <P=^Q(qV En(E))

p=*-Og

12

i?
1

M

Mm

1 he dilfeience between this rule and its c-version is in the fourth premise. While C4 requires that
Y emails the ocriirience ,,f (/ or t|1P enabling of E now, R4 requites the eventual occurrence of q
or enabling of E. Here, an occurrence of p not followed by a <y. leads, as before, to y" holding
continuously, and no transition of T being taken. However, the weaker premise R4 guarantees
that £ is enabled infinitely many times, which suffices to violate the recurrent fairness requirement
(E,T).

In view of the fact that premise R4 appears to be of the same form as the conclusion, i.e., another
response formula, one may wonder whether we may not enter a circular loop, trying to prove one
response property by another. The answer to this problem is that when we prove premise R4, we
actually consider a simpler program, in which none of the transitions of E is ever used. This is
because the first time a transition of E can be taken, we have already achieved the goal of a state
on which E is enabled. £

Rules for Extended Response |
I

These rules combine single-step response properties to form general response properties, which need
more than a single helpful transition for their achievement. I

I.
First, we list two basic rules, which express the monotonicity and transitivity of response prop-f

erties. They properly belong to the general part. |

<7=*-0r
R-TRNS p=^0<7

P=^Or p=^ot

The most important rule for establishing extended response properties is based on well-founded ■
induction. i

We say that the binary relation >- over the set A (often presented as the pair (.4,>-)) is wdl-j
founded, if there does not exist an infinite sequence a0,ax,..., where a, € A, such that öJ >■ a1+i for?
all i = 0,l,....

For the relation y, we denote by -< its inverse relation, i.e.,

a -< 6 ^=> 6 >- ,",

and by ^ the reflexive extension

a •< b <=> (a -< 6) or (a = 6).

Assume a well-founded relation (A,y), and a partial ranking function S : S •-♦ A, mapping
states into the domain A. We denote the fact that S is defined by 6 € A. The following rule uses
well-founded induction to establish an extended response property.

m

wEtt-RESP Wl. p=*-(gV¥>)
W2. v=y(6eA)
W3. [PA {6 = a)] =>- Qfo V (y- A {6 -< a))]

P=^Oq

13

Premise YV1 ensures that /> entails that either q already holds, or s? is established. Premise \V2
ensures that o" is defined as long as V holds. Premise YV3 guarantees that if v holds with a certain
rank o, then eventually we will reach a state, in which cither q holds, or f is maintained but
with a rank lower than a. Since a well-founded ranking cannot go on decreasing forever, we must
eventually reach a <j-state.

The adequacy of this set of rules for proving response properties is established in Theorem 7.3
presented in Section 7, which states: ;

The rules given above are complete, relative to assertional validity, for proving the V- I
validity of any response property. f

6 Rules for Progress

In this section we deal with progress properties, which are the properties that can be expressed by j
a formula of the form " i

DOP V Oüq, I

for some past formulae p and q. There are several alternative forms in which every progress property j.
can be recast. They are given by |

DOp -* DOq, or DOP=^Oq- I
f'

We prefer to work with an extended form of the last formula; f

(pADOr)=J-09. |

This formula states that any occurrence of p, that is followed by infinitely many occurrences of ;\f
must eventually be followed by an occurrence of q. *

Progress under Continual Fairness

If we work only under the assumption of continual fairness, that is, the family of recurrent fairness f
requirements happens to be empty, then we can base the proof of progress properties on some?
response properties and a well-founded argument. This is given by the C-PROG rule. §

C-PROG Cl.
C2.
C3.
C4.

P=S-(qV<P)

(9A(6 = o)] =5- [(^A(Ha))U?]
[r A V> A (S = a)] =>- pfo V(jy Q)|

(pAaO>')=^0?

Note that this rule uses the Unless operator U.

Premise Cl of the rule ensures that any position that satisfies p, either already satisfies (/. oil
satisfies <p. Premise C2 ensures that S is defined as long as 9 holds. Premise C3 ensures that.!
starting at a position satisfying <p and having a defined rank a, 9 is continuously maintained nndf

14 I

the rank never increases above a until </ or curs, if ever. Premise Cl indicates that an additional
occurrence of r strengt liens th(» non-inrrr.isr. guaranteed by C3, into a guaranteed eventual decrea-c.
Thus, if there are infinitely many occurrences of r then, either 6 decreases infinitelv often, which is
impossible due to well-foundedness, or 7 is eventually realized.

The adequacy of this rule is stated by Corollary 7.1, presented in Section 7, which claims:

For a program with no recurrent fairness requirements, the C-PROG rule is complete,
relative to assertional validity, for proving the V-validity of any progress property.

Obviously, a progress property (p A OOr)=X>7 can be valid over a program due to the fact '■■.
that the simpler response property p=$^0<7 is valid. The theorem above depends on a particular \
mechanism to guarantee that infinitely many occurrences of r cause the eventual occurrence of q. \.
This mechanism is based on a ranking function, measuring the distance away from the realization \
of q, such that each occurrence of an extra r causes an eventual decrease in the rank. {

Progress under Recurrent Fairness

When we have recurrent fairness requirements, a well-founded decrease is not the only mechanism
by which infinitely many occurrences of r can cause the computation to progress from p to q.
Another possible mechanism is based upon a recurrent fairness requirement (E,T) G ft, such that
each transition in T leads from p to q, and each occurrence of r causes E to eventually become
enabled (at least once). Consequently, the rule C-PROG is no longer adequate.

To cover the case of recurrent fairness, we present first a single-step rule for progress under
recurrent fairness. The rule concerns a recurrent fairness requirement (E,T) £ 71, and past formulae
p, r, q, and <p.

R-PROG Rl.
R2.
R3.
R4.

P=M<7V¥>)
{V}T{<7W}

[<P A DO(V? A r)) Q{qVEn(E))
(pADOr)=^09

This rule establishes a single-step progress, under the assumption of the recurrent fairness re- I
quirement (£", T) G 71. Several single-step progress properties can be combined, using the properties t
of monotonicity and transitivity of the progress formula. Below we present two rules, properly be- |
longing to the general part, for these two properties.

P-MON rf^S-p. r*=>-r, q^ytf

(pAaO0=*"O7
P-TRNS (p A DO'") =*-0<?

(<7 A DO*-) =*-0*
(p A ao) =*-<>* (p'ADOr')=^0<7'

Finally, we have a well-founded rule for combining together progress properties using induction.

15

V

wELL-rnoG W'l. |)^(i/V;)

W:j. [P A (6 = a) A DQrl =^Of</ V (V A (a •< Q))|
pADOr]=^-07

This more general case is summarized by Theorem 7.4 presented in Section 7.

The rules given above are complete, relative to assertional validity, for proving the V-
validity of any progress property.

7 Completeness of the System {

In this section we sketch the general ideas that lead to the (relative) completeness of the rules f
presented earlier. Since the most innovative part of the proof system presented in this paper is the I
incorporation of past formulae, we structure the completeness proof into two major steps, the first f
of which is the elimination of the past. The second step is left to deal with the restricted case of f
safety, response, and progress properties, where the subformulae p and q are only state formulae f

I
t

Encoding Past Formulae I

f-
We define a temporal formula as stratified if it contains no future operator within the scope of a {
past operator. Obviously, all formulae in canonical form are stratified, because they never apply \
past operators to strict-future formulae. 1

Let us fix our attention on a program P and a stratified formula V, whose validity over P we f
wish to establish. I

t
Define $ to be the set of subformulae of <fi (possibly including V) whose principal operator is a |

past operator, i.e., O or S. We define a set of new boolean variables B consisting of a variable bp *
for each formula p € $. We intend to use tha variable hp to encode p, i.e., as a variable that will be |
true at a position in a computation iff the formula p is true there. I

Let q be a subformula of V, and p a subformula of q. We define p to be ^-maximal in q if

• p € * and *■

• there is no r, another subformula of q% such that r G $ and p is a proper subformula of r, i.e.,!
strictly contained in r.

Let Pii -,pJ be all the ^-maximal subformulae of q. We define the statification (i.e., encoding \
of past formulae as state formulae) of q, denoted by stat(q) (or qs), to be

stat(q) : g[6Pl/pi,...,6Pn/pn]. J \

That is, stat(q) is obtained from q by replacing all occurrences of the subformulap, by the variable!
bPl, for f = 1 n. It is not difficult to see that, in the special case that q is a past formula, $/«/(</)!
is a state formula.

16 -A

Replacing past formulae by boolean variables is obviously not enough, unless we «an guarantee
that in all positions of the computation the variable br assumes the same truth value «s ,,. T,,
achieve this we modify the program P. given by the system {V, ^.T.Q.C.R), to obtain its Matifml
version P„ given by (V, S, f, 0,C, 71}, where we define:

• V = V u B. That is, we augment V by the new boolean variables in B.

• E - The set of interpretations over V. Variables in B should be assigned boolean values.

• 7 - Corresponding to each r € 7, we place in 7 a transition f, whose transition relation is
given by pT = pT A N. The assertion N{V,V') controls the evolution of the variables in B]
between each state and its successor, and ensures that it corresponds to the evolution of the [
past formulae they stand for. The assertion TV is a conjunction containing a conjunct C(p)
for each p€$. These conjuncts are given by: i

-C(Op) : b'Qp = stat(p). . j.
This conjunct guarantees that the boolean value of 6Q in the next state equals the)
truth-value of stat(p) in the current state. j

. C(pSq) : b'pSq = [(stat(q))> V (bpSq A (stat(p)y)}. j

This conjunct guarantees that bpSq is true in the next state iff either stat{q) holds there, I
or stat(p) holds there and b ß holds now. I

• 9 : QMnit. The assertion Init ensures that the initial value of each variable bp 6 B matches {
the initial value of the past formula p. The assertion Init contains a conjunct J(p) for each y
p € $, given by: i

I
.J(OP):-6QP.

This conjunct states that all previous formulae are initially false. I

• 7(p5g) : bpSq = stat(q). |

This conjunct states that the only way for pSq to hold at the first state in a computation |
is for stat(q) to hold there. f

I
The structure of the fairness families C and % is identical to that of C and ft, except for the {.

trivial renaming of each r to f. |

Example 7.1 Consider the simple program, presented in Example 4 above, which was given by f
V = {i}, 7 = {T}, where pT : x' = x + 1, and 0 : x = 0. The formula considered there is j

V : O((X=10)-KS>(Z = 5)). 1

Clearly, for this case $ = {<$>(x = 5)}, yielding a single boolean variable 6, corresponding f
to the past formula <$>(x = 5), which is an abbreviation for T5(X = 5). Consequently, we have!
$tat(<p) : D((X = 10) -» 6), and the statified program Ps is given by: |

• V = {.r, 6}. . I

• T ~ {?}> where (following some simplifications) p\ : (x' = x + 1) A (6' = |(x' = 5) V />]). !

17 fr

• 0 : i.r = 0) \ {I, ~ (.r = .">)). wliich is <-C|iiivalrnt to (x = 0) A ->b.

Theorem 7.1 (Past Elimination)

• The formula V is valid over P iff <pt = stat{^>) is valid over P,.

• Any proof of P, r- <p,, using the proof system presented in this paper,
can be effectively transfoimed to a proof of P h 'P.

Proof: The first statement of the theorem follows from the fact that there is a one-to-one corre-f
spondence between computations of P and computations of P„ such that for every a. a computation \
of P, and ä, the corresponding computation of P,, position ;', and past formula p € $: f

(<7,»(=p <=> (erj) \= {bp = T). I

This fact can be proved by induction on j = 0,1,... and structural induction on p € $. I

The second statement of the theorem is proven by showing that, replacing each line h «• in the!
proof of P, h V?» by the line h stat-*(rl>), we obtain a sound proof of P r- V>. The transformation I
star^i/') replaces each occurrence of bp in tf- by the past formula p, each occurrence of b' by p',!
and each occurrence of 0 and p\ by 0 and pr, respectively. |

A detailed proof of this fact considers the different justifications for the line H »/-, and shows the!
corresponding justifications for h sra*-1(0). |

r
An illustrative case in point is a proof line stating the validity of the verification condition!

{T}^{*p5,}. f°r ^e simple case that p and q are state formulae, and that the line is justified by^
generalization of a valid state formula.

This leads to the proof line

which can be written as

r- p'T=^b' 5,'

h \pr A (&;s, = k'v(6p,s,Ap')])]:^&;5,,

which is equivalent to

r- Pr =^[?'V(6p5?Ap')].

.Since pr does not refer to 6p5?, this line can be valid only if pT -* q' is a valid state formula.
Applying stat~' to p% =*-&' c » we obtain

I- pr=*-(p5?)',

which expands to

I- pT =^[9'V((p59)Ap')].

Clearly, the validity of pT -* q', claimed above, can be used to justify this line.

A small technical problem is that a naive substitution of a past formula p for the variable />„
may result in formulae that are not allowed in our syntax. A case in point is a state formula!
o(6p), in which the variable hp falls in the scope of a quantification (on some other variable). Ourf

IS

syntax does not allow quant ideation over temporal formulae t hat arc not state formulae. To resolve
this problem, we observe that the state formula a(bp) is equivalent, in all contexts, to the formula
{hr A O(T)) V (-6p A O(F)), in which the occurrences of bp are outside any scopes of quantify atioiis
performed in a. Substitution in this latter form will result in a formula that is allowed by our
syntax.

We should emphasize that the systematic elimination of the past from formulae air4 proofs,
which facilitates establishing the completeness of the proof system, is not necessarily the approach
we recommend for the actual verification of concrete programs. On the contrary; we strongly
recommend working directly with past formulae which explicitly represent the relevant facts about
the history of the computation leading to the current state. For example, we find the invariant
D((x = 10) -♦ <$>(x = 5)) much more appealing and explicit than the encoded version o((x =
10) —♦ b), accompanied by the tacit understanding that b = T iff we have passed in the past through
a state in which x = 5. |

Having shown how the past can be systematically eliminated, and replaced by state formulae, it \
only remains to show that the rules given above are adequate for proving the validity of the three
classes of formulae: |

Dp P=^Oq (/>A00r)=J-0<7, |

for the restricted case that p, q, and r are state formulae. These cases are more familiar, and the ?■
completeness of similar rules, for the cases of the safety and response classes, has been previously \
discussed in several places, such as [LPSS1], [GFMdRS5], [FraS6], [ASS9], and [MPS7]. !

Safety I
i

Since we have restricted our attention to state formulae, it is sufficient to show that, whenever Dry I
is valid over the program P, we can prove this fact, using the INV rule. Premise 13 is proven by)
showing that (pT A <?) -» <f' is a valid state formula for every r e 7. I

I ■
Theorem 7.2 (Completeness of Safety) The rule INV 15 complete, relative to assertional valid- f
ity, for proving the validity of safety formulae of the form Dq, where q is a state formula. |

Proof: The basic idea of the proof is the construction of an assertion X that holds in a state s ?
iff 5 is accessible, i.e., appears in some computation of P. We then show semantically that, if Dq is *
indeed valid over P, then the premises of the INV rule are valid when taking X for V. |

We assume that our data domain is expressive enough to encode records (i.e., lists) of data"
elements, and lists of records. In the definition of the assertion, we freely use the auxiliary variable f
r ranging over records, and a variable A ranging over lists of records. We are mainly interested in I H
records r of size |V|, and often write r = V to denote that the record r contains a list of elements!
equal to the current values of the state variables V. We use the subscripted expression X[i] to refer f
to the i-th element of A, and the expression last(X) to refer to the last element of A. For an assertion |
v(V), referring to the state variables V, and a record r of size equal to that of V, we denote by <P{ r) f
the assertion <P in which the value r[i] is substituted for the state variable u< 6 V, for i = 1,..., |l'|. |

The assertion X is given by: |

X{V) : 3A:(|A|>0)AaA/?A7). |

The body of the assertion X (to which we refer as *(l". A)) consists, in addition to the requirement,f
that A is non-empty, of three clauses, given bv: I H

I.

'» : «(-Ml]) 1

J: V = hiM(\)

">: V/(l<i<|A|): VMA(i],A(i+l]). f

The assertion \ states the existence of a list of records A of length n = |A| > 0. The list A
encodes the history of a computation from some initial state to the current state. Each elemrnt;

\[i], i = 1,..., n, is a record of data elements, representing the values of the state variables V at the ;
t-th state of the computation. f

Clause Q states that A[l] satisfies 0, the initial assertion of the program. !
I

Clause ß states that the current state variables V equal last(X) = A[n], the last record in A. f

Clause 7 states that the (t + l)-st record of A, for each : = l,...,n - 1, is a r-successor of the1

t-th record, for some transition r, guaranteeing the correct succession from A[l] to X[n\. f

We will show now that X, when substituted for V, validates the three premises of the INV rule, f

11. 0 - X I
It is not difficult to see that taking A to be {V), i.e., the list consisting of the single recordJ
containing the current values of «i, ...,ti|v|, the assertion 0(V) implies the body #(V, A). |

12. X — q I

By our assumption that Oq is valid over P, it follows that each accessible state satisfies q. %
Since X characterizes precisely the accessible states, the premise follows. I

13. [pr(V, V) A 3A : *(V, A)] -» 3A': *(V\ A'), for each r € T. I
It is not too difficult to see that if V, V, and A satisfy />r(V, V) A *(V, A), then there exists af
A' which satisfies *(V',A'). An appropriate choice is I

A': A*(V"), I

r
i.e., the list obtained by appending to the end of A an additional record, consisting of the list{
of the values of the primed variables V. |

Since we are interested in showing completeness, relative to assertional validity, it is sufficient!
to show that the premises are assertionally valid, as we have done above. Jk

Response I

As a complete rule for establishing response properties of the form p=yOq, for the restricted
case that p and q are state formula, we propose the following F-RESP rule, which is an appropriate)
combination of the WELL-RESP, C-RESP, and R-UESP rules. As usual, the rule stipulates the existence;
of an auxiliary aösertion <P, a well-founded relation (A, >-), and a partial ranking function 6 : S •-> .4,1
mapping states into the domain A. f

Since we intend to combine together continual and recurrent fairness, it is helpful to form the
union of the continual and recurrent fairness requirements into one set of fairness requirements*
T = C\JTl. |

20

iifVii&^itm

F-m:sr VI. V V y)

'e <E A)

F3. {*? A (* = o)}T{?V (v A (<5 ^ Q)) }

For each a £ A, there exists a fairness requirement Fa = {E0,Ta) 6 T, such that
F4. ^A(i = Q)}Ta{?v(^A(^ü))}

If F0 € C, then
C5. [V A {6 = a)} =>- (q v £n(£0))

If Fa € 71, then

R5. .F-W
[V A {6 = o)] =»- p[g V (y? A (6 -< a)) V En(E0)|

p=^Oq

This rule combines well-foundedness with single-step rules. For each parameter a € A, the rule
requires the identification of a fairness requirement (£0, Ta), that can be either a continual fairness
or a recurrent fairness requirement. In both cases, it is required (by premise F4) that any transition
in Ta leads from each Estate 5 with rank a to a state s', that either satisfies q, or satisfies y> with a
rank strictly lower than a. Any transition not in Ta is required (by premise F3) to lead from each
V-state with rank a to a state s', that either satisfies q, or satisfies V with a rank not higher than
a.

For the case that {Ea,Ta) is a continual fairness requirement, premise C5 requires that each
Estate with rank a, either satisfies q, or enables Ea. For the case that {Ea,Ta) is a recurrent
fairness requirement, premise R5 requires that each V-state s with rank o is eventually followed by
a state s', that either satisfies q, or satisfies <fi with a rank lower than a, or enables Ea. To avoid
circularity, premise R5 is to be proven for a simpler program, in which Fa = (£a,ro) is removed
from the list of fairness requirements. This is feasible because when trying to achieve a state in
which Ea is enabled, we cannot be helped by any transition of Ea, since its activation from a state i
s' implies that £„ is already enabled on s'. I

The following lemma establishes a connection between an arbitrary well-founded relation and a I
well-founded ranking. Such a ranking is required for the rule F-RESP. I

i
i

Lemma 7.1 Let B be a well-founded relation over the set S. Then there exists a total ranking':
function 6 : 5 ►-+ Ordinals, mapping each element of S into some ordinal, such that:

a. sBs' - 6{s) > 6{s').

b. Ifs'Bs" -> sBs" for every s" e S, then £($) > 6{s').

Based on this lemma, we can now state and prove the main completeness theorem.

Theorem 7.3 (Completeness for Response) The rule F-RESP is complete, relative to asser- \
tional validity, for proving the validity of response formulae of the form p=>0«7. where p and q are \
state formulae. 1

. > ^w

>*s

;

m
mti'iWäiltmm

/»

I roof. .\>M,m, .he f(,im„!, ;)^0<? to ,)p va,i(| owr thp p ^ ^ ^ «■

7;:'01 «» «PPropr,.,... «sscM.ion A a wHI-foumM ordorin, (A v). a rank.n, function * : E -
A and a sclort.o,, funct.on. »InitiJying for each «6^a fairness requirement F = (F 7) c

pnncple, >t „ sufficcnt to show for each premise V\ the validity of A - 0, where \ is the assertion

thror^enZ,nS aCCCSSibility' and WllOSe inv«iance over F has been established by the preceding

We define a (computation) segment to be a finite sequence of states a : *. s, Äi for it > 1 ;

such that for every i = , * - !, 5,+J is a r,uccessor of ^ fof some r fi ^i »y thallhe v

Sites'< Tfi " anttHat jt "*""" Sl t0 Sk- We deRne Ä S^ment t0 be 9-/- if none of f the states *„..., ., sat.sfies ,. From now on, when we refer to a segment, we mean a 7-free segment, f

We define the assertion <p required by the F-RESP rule as follows. f

s\=<? <=* There exists an accessible p-state 3 and a 9-free segment, I
connecting i to s. |

This definition is verbal, but it is clear how it can be expressed in our assertion language, using I
techniques similar to the ones used for defining X in the the01em about safety. |

It is clear that if the state 3 satisfies *, and some computation contains 3 at position j, then t
due to the assumed validity of p=*-<>7 there must be a later position * > j satisfying q. ' |

It is also obvious that *>, defined in this way, satisfies premise Fl of the rule, i.e., p^(q v 9) I
This is because, ,f 3 „ an accessible p-state which does not satisfy ,, then we can take s = 3 and the f
singleton segment 3, connecting 3 to itself, as a justification for the claim that 3 satisfies 9. We can £"

Principle^' t0nS,derat,0nS here and elsewhere to accessible states only due to the incrementality f
|:

Let the family of combined fairness requirements F consists of the sets F„...,Fm, where each f
ti » either a continual fairness requirement or » recurrent fairness requirement. Without loss of 1
generality, assume-that Fx = (T,T) is a continual fairness requirement, consisting of a pair of sets *:
«A being the fall set of transitions T. For a segment a : su...,sk and a faifness requiremeu I
fl G ^ we say that F, = (£,, Tt) is /U//H/erf in a if one of the following holds $

• Some transition of Ti is taken in a.

• F, is a continual fairness requirement, and F, is disabled on some state in a.

For a segment or we define sat(a) to be the set of all indices ,' = 1,..., m such that F, is fulfilled
«n a. Let $ denote the set of all states satisfying <p. We define a binary relation Bon* by:

sBs <=
{l,...,m}.

There exists a g-free segment a connecting s to 3, such that sat{(r) =

■■4
1

-

We claim that B is a well-founded relation over $. This is because an infinite

*lBs2Bs3...t

gives rise to a computation

90

sequence

Ijj

such that ,<s° is initial. > satisfies ;>. and no state beyond .« satisfies 7. Such a computation obviou-ly
violates our assumption that p=i-.-yq i.- valid over /'. The fact tiiat the sequence above is a com-
putation, in particular that it satisfies all the fairness requirements, hinges on the assumption that
the satisfiability set of each segment s\...,s' + ' is the full set {1 m}.

/Wording to Lemma 7.1. there exists a ranking function CQ : 4» *-* Ordinals, mapping states in
<J> into the ordinals.

Let 5 be a 9-state \nd s' a successor of 5. If s' does not satisfy «7, then it is also a 9-state. In
this case we show that £0{$) > S0{s'). This inequality is ensured by clause 6 cf Lemma 7.1, provided
we show that for every 5", s'Bs" implies sBs".

Indeed, let s" be a state such that s'Bs". By the definition there exists a segment a' : s' .•>" ;
connecting s' to s", such that sat{a') = {1. ...,rr.}. It is obvious that the segme* i. a : s,s' s",':
formed by appending 5 to the beginning of s', connects 5 to s", and that sat(a) = {l,...,m}. This
establishes sBs". f

The ranking 60 is not fine enough to uniquely identify the fairness set Fa. We therefore augment I
it by a secondary ranking 6\ defined as follows.

1
For a segment <r, we define the deficit of a, denoted by A(cr), to be the smallest positive integer ;■

i, such that jpt is not fulfilled in a. In the case that sat{c) = {l,...,m}, A(tr) is defined to bp m + 1. ?
We define a segment a : S\,..., s* to be leveled if S0{si) = ... = £o(5*)- I

For every V'-state 5, we define its secondary ranking 6i(s) by |

6i(s) = max{A(<r) I a is a leveled segment departing from s }.

The complete ranking function, to be used in the rule, is formed by the lexicographical pairing j
6(s) = (£0(s), ^1(5)). The range of the function 6 is defined to be A, the set of all pairs of the form ':
(oo, i)> where QO is an ordinal and i < m + 1. |

The ordering >- over A is defined by |

(QO, 0 v (<y'0, i') <=> (a0 > a'0) V ((a0 = a'0) A (i > i')) |

. Clearly, this ordering is well-founded. |

There are several properties these ranking functions satisfy. |
V

Pi. For every Estate s, 6i(s) < m. |
Let a be a leveled segment connecting s to some 5'. If sat(<r) equals {l,...,m}, then sBs'*
holds, which leads to 60(s) > S0{$'), contradicting the fact that er is leveled. It follows that at|
least some Fi is not fulfilled in <r, and therefore 6i(s) < m.

P2. For every V-state 5 and its successor s', either 5' satisfies q, or 6(s) >z S{s').
Assume that $' does not satisfy q. We have already shown that S0{s) > S0(s'). If 6Q(s) > 5o(.<').|
then Heady S(s) >; S(s'). In the other case, i.e., S0{s) = 60($'), let Si(s') be i < m. By the:
definition of Si, there exists a leveled segment a': s', ...,s", such that i is the smallest index j
of a fairness requirement Fi, which is. not fulfilled in a'. Consider the augmented segment i
a : s,s\ ...,5". Clearly, a is leveled and any Fi fulfilled in a' is also fulfilled in a'. It follows!
that the deficit of a, A(a) > A(<T/) = t. Since a is only one of the leveled segments depatt'mgf
from s, and Si(s) is defined to be the maximum of the deficits of all such segments, it follows*
that £i(s) > i. |;

23

—»u.

P3. Let s be a v-state. such that S^s) = /'. Let s' be a r-successor of .s. whore r is one of the
transitions of T,. Then, either 5' satisfies q. or 6(s) >- S(s').
It is sufficient to consider the case that $' does not satisfy q and that 60(s) = 60(s'), and to
show that 6i(s) > S^s'). Assume, to the contrary, that Sx(s) = S^s') = i. Let a' : s',....»"
be, as before, the segment realizing the deficit i for _<'. Clearly, tlie augmented segment
a : s,$',...,s" fulfills all the requirements fulfilled by a', and in addition also fulfills F,. It
follows that A(a) > i, and therefore also S^s) > i, contradicting our original assumptions.

We proceed to show that all the premises of the F-RESP are satisfied by these definitions. We have
already shown that Fl is valid. I

F2. <p=^{S£A) I
Clearly 60 and 6y are defined on every Estate. It follows that 6 is also defined. |

For the next premises, we identify for each value a = (a0, i) € -4, the helpful fairness requirement'
Fa = (Ea,TQ) to be Fi = (Ei,Ti). I

F3. {VA{6 = a)}T {<? V (? A (<5 :< a))} |
It is straightforward to show that if 5' is a successor of a 9-state s, then either .$' satisfies q or it is1

also a «r'-state, which by property P2 above satisfies 6(s) >; S(s'). k

F4. {VA(6 = a)}Ta {qv(vA(6-<a))} |

Let 5 be a ^-state, such that 6i(s) = z, and 5' a T-successor of .s, for some transition T € T{. Ifl
s' does not satisfy q, then it clearly satisfies y, and by the propertv P3 stated above, also satisfies?
6(s)^6(s'). _ " I

For the case that F, = (F,,Tj) is a continual fairness requirement, we proceed to show i
C5. [VA(5 = a)] =^(qVEn(Ea)) f

Let s be a y-state, not satisfying q, such that 6i(s) = i. Let a : s,..., s" be the segment realizing;
the deficit i. If £, were disabled on s, then according to the definition Fi would have been fulfilled:
in a. We conclude that F, must be enabled on s. I ;

For the case that Fi = (F,-,T.) is a recurrent fairness requirement, we proceed to show I
R5. F-iFc) \- [^A(Ä = Q)]=^o[?v(vA(^a))v£;n(£;)] f

Let P' denote the program which is identical to P in all components, except that the recurrent;;
fairness requirement t{ = Fa has been removed from its combined fairness set T. We proceed tof
show that P' \= i>, where 0 is the state formula whose validity is claimed to be provable in R5.|
Assume to the contrary, that r[> is not valid over P'. In that case there must exists a. a computation!
of P', containing at some position ; a y-state s with rank a (and 6x(s) = i), such that no positionf.
beyond j satisfies q V (y A (S -< a)) V En(Ei). Being a computation of P' means that it satisfies all*
the fairness requirements pose/ by P, except possibly Fi. However, since En(E^) = Ev(Ei) is one!
of the disjuncts excluded beyond position j, it follows that Ei is enabled only finitely many times!
on cr, which implies that a is fair also with respect to F,, and is therefore also a computation of P.\
This violates our original assumption that p=$-<>q is valid over P. §

f
If we base our completeness proof on induction on the size of T, the combined fairness set, we\

have just reduced the completeness problem of response properties for programs with \T\ — n + 1 j
to that of program with \Jr\ = n. By such an induction, since we have just shown that /" |= i.\ \V ■ ■

|idl follows that P' r- »/', as is required by R5. I

I

tell

.IP

aft

,¥S
!"
I-->m
Lai

iuy^'Mup'mv;im_v. ^r^TW^^'f^'^rft ipAM^^111;'«)^''

Note that the reduction implied by promise R5 always removes from F a recurrent fniriiet.*
requirement. This implies that after any number of such removals jF will still contain the continual
fairness requirement (7,7), and therefore \T\ > 1.

It follows that the base case for the induction can be \T\ = n = 1. In this case, the only helpful
requirement can be (7,7). The arguments above are fully applicable for this case, except that the
case leading to R5 never arises, since the helpful requirement is always a continual requirement, j

Progress

Lastly, we consider proving the completeness of our proof system for proving formulae of the form
(pADO)=>-C>9, for state formulae p, q, and r. A helpful intuition, which will guide us in the proof,
is that such a formula is valid over P iff the response formula p=^Oq is valid over a program P+

which differs from P by having an additional continual fairness requirement, which demands that
every computation contains infinitely many r-states.

With this understanding, we proceed in a route very similar to that of establishing completeness
for response properties. We consider first the general case of a program that has both continual
and recurrent fairness requirements.

As a first step, we formulate a combined rule for progress, using a notation similar to that of the
F-RESP rule, with some small changes. We define the combined fairness set TT = {(<f>, TP)} UC U H.
Thus, the set TT contains, in addition to the continual fairness requirements taken fronvC, and
the recurrent fairness requirements taken from 11, also the special "fairness" requirement (<j>,Tp).
This virtual fairness requirement contains no transitions in its E set, but restricts our attention (as
may be seen from the rule) to computations, in which r occurs infinitely many times. We represent
the requirements contained in TT by the list F0,Fi,...,Fm, where Flt...,Fm are the real fairness
requirements, and FQ = (<j>,TP) is the virtual one. Following is the combined rule for progress.

,;

s

,-\

F-PROG Fl. p=^(qVip)

F2. V=^(6eA)
F3. {<PA{6 = a)}T {qv(<PA{6*a))}

For each a € A, there exists a fairness requirement Fa = (Ea,Ta) € ^>, such that:
If Fa ?* (*,Tp), then

F4. {<PA(6 = a)}Ta{q\/{<PA(6-<aj)}
If Fa = 0,7», then

F5. {<PA(S = a)Ar}T {qV (<P A (6 * a))}
If Fa € C, then

C6. [PA (6 = ö)] =*- (qV En(Ea))
If Fa € 11, then

R6. TT -{F0}\-

 [V A (6 = or) A DQr] =^ Q[? V (y A {6 ■< a)) V En(Eaj\

(p A OOr) =>- 09

4 m

Theorem 7.4 (Completeness for Progress) The ru/e F-PROG is complete, relative to as$er-\.
tional validity, for proving the validity of progress formulae of the form (p A 0<>r)=>-Oq, where]
p, r, and q are state formulae.

25

w

Proof: Assume the formula (p A OOr)^0<? to be valid over the program P. We adopt the
clefimt.ons of 9, and ,,-free segments, from Theorem 7.3. We slightly modifv the definition of
fulfillment in a segment to read as follows:

, J°" f seg"ient a;-s*<->s* and a fairness requirement F< = (E„Ti) € JF„ we say that /■', is ^
fulfilled in er if one of the following holds:

• i > 0 and some transition of Ti is taken in c.

• i > 0, Fi is a continual fairness requirement, and £, is disabled on some state in a. I.

• t = 0 and some state in a satisfies r. I

I
Thus we associate the fulfillment of the set F0 = {</>, 7» with the satisfaction of r. We define the I

set sat(v), for a segment <r, as before, except that its range may now be any subset of {0,1 m} *■
Similarly, we define the relation B to hold between two states, s and s\ if there exists a segment l

<r, connecting them, such that sat(a) = {0,l,...,m}. The relation B is well-founded, because I
an infinite sequence of fl-related v-states gives rise to a computation violating (p A oOr)=^0<7 I
Consequently, we obtain the primary ranking S0. The definition of the deficit A(a) of a segment a ?

«precisely the same as the corresponding definition in Theorem 7.3, except that it now ranges over I"-

f-Vr?}' ThlS ICadS t0 thC secondary rankinS *i, and to the definition of the combined ranking I
o - (*o,6i), which ranges over pairs (a0,:), with Q0 an ordinal, and 0 < i < m. ° |

It is straightforward to verify that properties Pi and P2 are still valid, as is P3 for Sl{s) = i > 0 f
A special consequence of the definitions above is that if s is a V-state, which satisfies r, then f
Oi(s) > 0. I

I
We may now turn to establish the validity of the premises of the rule. Premises Fl, F2, and F3 f

follow from arguments similar to the ones presented in the case of the response rule. ' I

Given a parameter a = (a0,i), we identify the helpful fairness requirement FQ as Ft € T *
Premise F4, which is applicable only in the case that i > 0, is justified by arguments similar to I
those of the response case. So are premises C6 and R6, which are also applicable only to the cases I
* > 0. Considering R6, the inductive argument has to consider a similar progress property for a]
simpler program. §

Premise F5 holds trivially, since by the observation above, there can be no y-state s, satisfying f
r, such that t = S^s) = 0. I

Using the constructions employed in the proof of this theorem, it is possible to derive the I
following corollary. *

F

Corollary 7.1 (Completeness of Progress under Continual Fairness) For a program with I
no recurrent fairness requirements, the CPROG rule is complete, relative to assertional validity, for t
proving the V-validity of any progress property. I

Proof: Assume the formula p=><>9 to be valid over the program P, which has only continual t
fairness requirements. We adopt the definitions of the assertion <P, the ordering B, shown to be I
well-founded, and the ranking function *o, based on fl, from the previous theorem. We take S0 for I
the ranking 6 required by the CPROG rule. It is not difficult to see that this choice of 9 and 6 I
satisfies premises C1-C3 of the rule. Let us consider premise C4. Assume a computation, in which I

26

ifcüJ

the state .> at position j satisfies r A V, and has the rank <?>o(.s) = &• It 's not difficult to see that
there must be another state s, at position k > j, such that either s satisfies q, or the segment s.*
is g-free and fulfills all the (continual) fairness requirements associated with P. In the later case
sBs (since $ satisfies v>), and according to clause a of Lemma 7.1, this implies that 60(s) > M*)-
This establishes premise C4. j

Acknowledgement

We gratefully acknowledge the help of Alur Rajeev and Tom Henzinger in careful reading of the
manuscript and thank them for many helpful suggestions. ;

References I

[Apt81] K.R. Apt. Ten years of Hoare's logic: A survey - part I. ACM Trans. Prog. Lang.
Sys., 3:431-483, 1981. |

I
[AS89] B. Alpern and F.B. Schneider. Verifying temporal properties without temporal logic.

ACM Trans. Prog. Lang. Sys., 11:147-167, 19S9. f
I

[Coo78] S.A. Cook. Soundness and completeness of an axiom system for program verification.
SIAM J. Comp., 7:70-90, 1978. I

[FraS6] N. Francez. Fairness. Springer, 1986. I

[GFMdR85] 0. Grumberg, N. Francez, J.A. Makowski, and W.-P. de Roever. A proof rule for fair
termination. Inf. and Comp., 66:83-101, 1985. I

i |
[Har79] D. Harel. First-Order Dynamic Logic. Lee. Notes in Comp. Sei. 68, Springer, 1979. \,

i
[Krö87] F. Kroger. Temporal Logic of Programs, volume 8 of EATCS Monographs on Theoret4

ical Computer Science. Springer, 1987. I

[LPS81] D. Lehmann, A. Pnueli, and J. Stavi. Impartiality, justice and fairness: The ethicr
of concurrent termination. In Proc. 8th Int. Colloq. Aut. Lang. Prog., pages 264-277/
Lee. Notes in Comp. Sei. 115, Springer, 1981. |

I"
[LPZ85] 0. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Proc. Conf. Logici.

of Programs, pages 196-218. Lee. Notes in Comp. Sei. 193, Springer, 1985. §

!•
[MPS3a] Z. Manna and A. Pnueli. How to cook a temporal proof system for your pet language;

In Proc. 10th ACMSymp. Princ. of Prog. Lang., pages 141-154, 1983- |
?•■

[MPS3b] Z. Manna and A. Pnueli. Verification of concurrent programs: A temporal proof
system. In J.W. DeBakker and J. Van Leuwen, editors, Foundations of Computci
Science IV, Distributed Systems: Part 2, pages 163-255. Mathematical Centre Tractr
159, Center for Mathematics and Computer Science (CWI), Amsterdam, 1983. |

[MP84] Z. Manna and A. Pnueli. Adequate proof principles for invariance and livehess prop*
erties of concurrent programs. Sei. Comp. Prog., 32:257-2S9, 1984.

27

r.MPSTl

[MPsn]

[0LS2]

[PnuS6]

[ThoSl]

Z. Manna and A. Pniieli. Specification and verification of concurrent programs bv
V-automata. In Proc. l.fth ACM Symp. Princ. of Prog. Lang., pages 1-12, 19S7. " \

Z. Manna and A. PnueÜ. The anchored version of the tempoal framework. In JAY.
de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Linear Time, Branching Time
and Partial Order in Logics and Models for Concurrency, pages 201-284. Lee. Notes
in Comp. Sei. 354, Springer, 19S9.

S. Owicki and L. Lamport. Proving liveaess properties of concurrent programs. ACM
Trans. Prog. Lang. Sys., 4:455-495, 19S2.]

A. Pnueli. Applications of temporal logic to the specification and verification of reac-
tive systems: A survey of current trends. In J.W. de Bakker, W.-P. de Roever, and
G. Rozenberg, editors, Current Trends in Concurrency, pages 510-584. Lee. Notes in \
Comp. Sei. 224,.Springer, 1986. j

i

W. Thomas. A combinatorial approach to the theory of w-automata. Inf. and Cont \
48:261-283, 1981. ' j

28

:3

;S

ä

